Search results for "stochastic differential calculu"
showing 6 items of 6 documents
Stochastic differential calculus for wind-exposed structures with autoregressive continuous (ARC) filters
2008
In this paper, an alternative method to represent Gaussian stationary processes describing wind velocity fluctuations is introduced. The technique may be considered the extension to a time continuous description of the well-known discrete-time autoregressive model to generate Gaussian processes. Digital simulation of Gaussian random processes with assigned auto-correlation function is provided by means of a stochastic differential equation with time delayed terms forced by Gaussian white noise. Solution of the differential equation is a specific sample of the target Gaussian wind process, and in this paper it describes a digitally obtained record of the wind turbolence. The representation o…
Il Filtro Integrale Auto-Regressivo Continuo (I-ARC) per l’Analisi di Strutture Esposte al Vento
2010
In questo studio viene proposto un metodo per la rappresentazione di processi aleatori Gaussiani e stazionari, utile a modellare la turbolenza della velocità del vento, introducendo la versione integrale del modello auto-regressivo discreto già proposto in precedenza. La rappresentazione di un processo aleatorio di assegnata funzione di correlazione viene condotta integrando un’equazione integro-differenziale in cui viene coinvolto un nucleo, che rappresenta la memoria del processo, in presenza di un rumore bianco Gaussiano. La soluzione dell’equazione rappresenta un campione del processo aleatorio della turbolenza della velocità del vento. E’ stato mostrato che il modello I-ARC fornisce, n…
Multiplicative cases from additive cases: Extension of Kolmogorov–Feller equation to parametric Poisson white noise processes
2007
Abstract In this paper the response of nonlinear systems driven by parametric Poissonian white noise is examined. As is well known, the response sample function or the response statistics of a system driven by external white noise processes is completely defined. Starting from the system driven by external white noise processes, when an invertible nonlinear transformation is applied, the transformed system in the new state variable is driven by a parametric type excitation. So this latter artificial system may be used as a tool to find out the proper solution to solve systems driven by parametric white noises. In fact, solving this new system, being the nonlinear transformation invertible, …
Direct Derivation of Corrective Terms in SDE Through Nonlinear Transformation on Fokker–Planck Equation
2004
This paper examines the problem of probabilistic characterization of nonlinear systems driven by normal and Poissonian white noise. By means of classical nonlinear transformation the stochastic differential equation driven by external input is transformed into a parametric-type stochastic differential equation. Such equations are commonly handled with Ito-type stochastic differential equations and Ito's rule is used to find the response statistics. Here a different approach is proposed, which mainly consists in transforming the Fokker–Planck equation for the original system driven by external input, in the transformed probability density function of the new state variable. It will be shown …
Stochastic analysis of external and parametric dynamical systems under sub-Gaussian Levy white-noise
2008
In this study stochastic analysis of non-linear dynamical systems under α-stable, multiplicative white noise has been conducted. The analysis has dealt with a special class of α-stable stochastic processes namely sub-Gaussian white noises. In this setting the governing equation either of the probability density function or of the characteristic function of the dynamical response may be obtained considering the dynamical system forced by a Gaussian white noise with an uncertain factor with α/2- stable distribution. This consideration yields the probability density function or the characteristic function of the response by means of a simple integral involving the probability density function …
Stochastic response of linear and non-linear systems to α-stable Lévy white noises
2005
Abstract The stochastic response of linear and non-linear systems to external α -stable Levy white noises is investigated. In the literature, a differential equation in the characteristic function (CF) of the response has been recently derived for scalar systems only, within the theory of the so-called fractional Einstein–Smoluchowsky equations (FESEs). Herein, it is shown that the same equation may be built by rules of stochastic differential calculus, previously applied by one of the authors to systems driven by arbitrary delta-correlated processes. In this context, a straightforward formulation for multi-degree-of-freedom (MDOF) systems is also developed. Approximate CF solutions to the …